Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Эркюль Пуаро сидел на белом песке и вглядывался в сверкающую синеву моря. Он был весьма элегантен в своем щегольском белом спортивном костюме и в огро...полностью>>
'Документ'
Цель преподавания дисциплины – освоение студентами необходимого объема знаний по основам химического строения организма, физико-химических свойств би...полностью>>
'Документ'
Камчатский полуостров расположен на восточной окраине России, более чем на 1500 км вытянувшись с юго-востока на северо-запад между Курильскими остров...полностью>>
'Анализ'
Работа школы в 2010-2011 учебном году была ориентирована на итоги аттестации обучения и направлена на реализацию цели « Гуманизация образования и восп...полностью>>

Главная > Примерная программа

Сохрани ссылку в одной из сетей:

ПРИМЕРНАЯ ПРОГРАММА

Наименование дисциплины

Математический анализ

Рекомендуется для направления (ий) подготовки (специальности (ей))

080100.62 – «Экономика» подготовки бакалавра

Квалификации (степени) выпускника Бакалавр

1. Цели и задачи дисциплины: ознакомление с фундаментальными методами дифференциального и интегрального исчислений. Математический анализ является основой для изучения других математических курсов, дает необходимый математический аппарат для изложения экономических дисциплин.

2. Место дисциплины в структуре ООП:

Учебная дисциплина «Математический анализ» входит в цикл общих математических и естественнонаучных дисциплин; требования к входным знаниям и умениям студента – знание элементарной математики: алгебры, элементарных функций, умение дифференцировать; данная дисциплина является предшествующей для следующих дисциплин: Макроэкономика, Микроэкономика, Теория отраслевых рынков, Экономика общественного сектора, Институционная экономика, Теория вероятностей, Эконометрика, Математическая статистика, Методы оптимальных решений, Дифференциальные уравнения.

3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих профессиональных компетенций: ПК-2, ПК-3, ПК-5, ПК-14, ПК-15.

В результате изучения дисциплины студент должен:

    Знать: основные определения и понятия изучаемых разделов математического анализа.

    Уметь: использовать математические методы в технических приложениях.

    Владеть: методами математического анализа.

4. Объем дисциплины и виды учебной работы

Вид учебной работы

Всего часов / зачетных единиц

Семестры

1

2

Аудиторные занятия (всего)

168

В том числе:

-

-

-

Лекции

80

х

х

Практические занятия (ПЗ)

Семинары (С)

88

х

х

Лабораторные работы (ЛР)

Самостоятельная работа (всего)

120

В том числе:

-

-

-

Курсовой проект (работа)

Расчетно-графические работы

Реферат

Другие виды самостоятельной работы

Самостоятельная работа

100

х

х

Выполнение домашнего задания

20

х

-

Вид промежуточной аттестации (зачет, экзамен)

х

х

Общая трудоемкость часы

зачетные единицы

288

8

(Виды учебной работы указываются в соответствии)

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

Тема I. Введение. Элементы теории множеств и функций.

Предмет математического анализа и его роль в экономической теории. Понятие множества и подмножества. Пустое множество. Множество всех подмножеств множества. Операции над множествами. Декартово произведение множеств. Соответствие, отношение, бинарное отношение. Взаимно однозначное соответствие. Эквивалентные множества, счетные и несчетные множества. Примеры. Элементы математической логики: логические символы, утверждение, следствие, прямая и обратная теоремы, необходимые и достаточные условия. Понятие отображения (функции), его области определения и области значений. Элементарные функции. Обратное отображение. Композиция отображений. Множество всех действительных чисел и множество всех точек числовой прямой, эквивалентность этих множеств. Свойства действительных чисел. Подмножества множества действительных чисел. Ограниченные (сверху, снизу) и неограниченные (сверху, снизу) множества. Наибольший (наименьший) элемент множества. Верхняя (нижняя) грань множества. Теорема о существовании верхней (нижней) грани. Понятие окрестности действительного числа (точки) и окрестности с выколотым центром. Понятие предельной точки точечного множества на числовой прямой. Внутренние и граничные точки. Множества плотные в себе, совершенные множества. Открытые и замкнутые множества.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

3. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

Дополнительная литература

1. Задачи и упражнения по математическому анализу для ВТУЗов / Под редакцией Демидовича Б.П. М.: Наука, 1978.

2. Волкова И.О., Крутицкая Н.Ч., Шагин В.Л. Математический анализ (с экономическими приложениями). Функции одной переменной. М.: ВШЭ, 1998.

3. Математический анализ для экономистов. / Под ред. А.А. Гриба и А.Ф. Тарасюка. М.: ФИЛИН, 2000.

4. Щипачев В.С. Математический анализ: Учебное пособие для ВУЗов. М.: Высшая школа, 1999.

Тема II. Предел и непрерывность функции одной переменной.

Примеры последовательностей. Предел числовой последовательности. Существование предела у ограниченной монотонной последовательности. Лемма о вложенных отрезках. Подпоследовательности. Теорема Больцано-Вейерштрасса о выделении сходящейся подпоследовательности. Лемма о существовании предельной точки у ограниченного бесконечного множества на числовой оси. Предел функции одной переменной. Односторонние и двусторонние пределы. Бесконечно малые (бесконечно большие) величины и их связь с пределами функций. Функции одной переменной, не имеющие предела в точке и на бесконечности. Свойства операции предельного перехода. Предельный переход в сложной функции. Первый и второй замечательные пределы. Второй замечательный предел в задаче о начислении процентов. Символы о-малое и О-большое и их использование для раскрытия неопределенностей. Непрерывность функции в точке и на множестве. Односторонняя непрерывность. Точки разрыва и их классификация. Арифметические операции над непрерывными функциями. Непрерывность основных элементарных функций. Непрерывность сложной функции. Верхняя (нижняя) грань, глобальный максимум (минимум) функции в ее области определения. Теоремы Вейерштрасса и Больцано-Коши о непрерывной на отрезке функции. Теорема о существовании и непрерывности обратной функции у строго монотонной функции, непрерывной на отрезке. Равномерная непрерывность функции и теорема Кантора.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

3. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

Дополнительная литература

1. Задачи и упражнения по математическому анализу для ВТУЗов / Под редакцией Демидовича Б.П. М.: Наука, 1978.

2. Волкова И.О., Крутицкая Н.Ч., Шагин В.Л. Математический анализ (с экономическими приложениями). Функции одной переменной. М.: ВШЭ, 1998.

3. Математический анализ для экономистов. / Под ред. А.А. Гриба и А.Ф. Тарасюка. М.: ФИЛИН, 2000.

4. Chiang А. С. Fundamental Methods of Mathematical Economics. N.Y.: McGraw Hill, 1984.

Тема III. Производная и дифференциал функции одной переменной.

Понятие производной функции одной переменной. Геометрическая и экономическая интерпретации производной. Уравнение касательной. Понятие о предельной полезности продукта и предельной производительности ресурса. Понятие об эластичности функции. Понятие дифференцируемой функции. Необходимое и достаточное условие дифференцируемости. Связь непрерывности и дифференцируемости функции одной переменной. Производная суммы, произведения, частного, сложной и обратной функции. Дифференцирование функций, заданных параметрически. Производные основных элементарных функций. Понятие дифференциала функции одной переменной. Геометрическая интерпретация дифференциала. Свойства дифференциала. Инвариантность формы первого дифференциала. Производные и дифференциалы высших порядков функции одной переменной и их свойства. Иллюстрация экономического смысла второй производной.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б. П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

3. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

Дополнительная литература

1. Задачи и упражнения по математическому анализу для ВТУЗов / Под редакцией Демидовича Б.П. М.: Наука, 1978.

2. Волкова И.О., Крутицкая Н.Ч., Шагин В.Л. Математический анализ (с экономическими приложениями). Функции одной переменной. М.: ВШЭ, 1998.

3. Замков О.О., Черемных Ю.Н., Толстопятенко А.В. Математические методы в экономике: Учебник. М.: Дело и Сервис, 1999.

4. Высшая математика для экономистов: Учебник. / Под ред. Н.Ш. Кремера.- 2-е изд. М.: ЮНИТИ, 2000.

5. Chiang А. С. Fundamental Methods of Mathematical Economics. N.Y.: McGraw Hill, 1984.

6. Sydsaeter K., Hammond P.J. Mathematics for Economic Analysis. Englewood Cliffs, N.J: Prentice Hall, 1995.

7. Simon C.P., Blume L. Mathematics for economists. N.Y., London: Norton, 1994.

Тема IV. Исследование дифференцируемых функций одной переменной.

Понятие об экстремумах функции одной переменной. Задача максимизации прибыли фирмы. Локальный экстремум (внутренний и граничный) функции одной переменной. Необходимое условие внутреннего локального экстремума (теорема Ферма). Теоремы о среднем значении (теоремы Ролля, Лагранжа и Коши) и их геометрическая интерпретация. Правило Лопиталя. Формулы Тейлора и Маклорена и их использование для представления и приближенного вычисления значений функций. Достаточное условие строгого возрастания (убывания) функции на интервале. Достаточные условия локального экстремума функции одной переменной. Выпуклые (вогнутые) функции одной переменной. Необходимое и достаточное условие выпуклости (вогнутости). Точка перегиба. Необходимое и достаточное условия точки перегиба. Вертикальные и невертикальные асимптоты графика функции одной переменной. Исследование функции одной переменной с использованием первой и второй производных и построение ее графика. Определение глобального максимума (минимума) функции одной переменной в области ее определения. Решение задачи максимизации прибыли фирмы в терминах объема выпускаемой продукции, а также в случае одного ресурса.

Основная литература.

1. Ильин В. А., Садовничий В. А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

3. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

Дополнительная литература

1. Задачи и упражнения по математическому анализу для ВТУЗов / Под редакцией Демидовича Б.П. М.: Наука, 1978.

2. Замков О.О., Черемных Ю.Н., Толстопятенко А.В. Математические методы в экономике: Учебник. М.: Дело и Сервис, 1999.

3. Высшая математика для экономистов: Учебник. / Под ред. Н.Ш. Кремера. - 2-е изд. М.: ЮНИТИ, 2000.

4. Математический анализ для экономистов. / Под ред. А.А. Гриба и А.Ф. Тарасюка. М.: ФИЛИН, 2000.

5. Щипачев В.С. Математический анализ: Учебное пособие для ВУЗов. М.: Высшая школа, 1999.

Тема V. Множества точек и последовательности в n-мерном пространстве.

Множество всех двумерных векторов. Геометрическая и экономическая интерпретация двумерных векторов. n-мерные вектора. Операции сложения n-мерных векторов и их умножения на действительные числа. Свойства этих операций. Скалярное произведение. Понятие n-мерного евклидова пространства. Норма n-мерного вектора и ее свойства. Понятие окрестности точки, окрестности с выколотым центром. Понятие предельной, внутренней и граничной точек точечного множества на плоскости и в п-мерном пространстве. Открытые и замкнутые множества на плоскости и в п-мерном пространстве. Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и п-мерного пространства. Выпуклые и невыпуклые множества на плоскости и в п-мерном пространстве. Понятие расстояния. Неравенство Коши-Буняковского, неравенство треугольника. Множества связные, несвязные, ограниченные, неограниченные. Замкнутость. Компактные множества. Понятие области. Отделимые множества. Понятие направления в точке. Последовательность точек на плоскости и в n-мерном пространстве. Понятие ограниченной и неограниченной последовательности точек. Взаимосвязь с покоординатной сходимостью. Теорема Больцано-Вейерштрасса. Лемма о предельной точке.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

3. Математический анализ для экономистов. / Под ред. А.А. Гриба и А.Ф. Тарасюка. М.: ФИЛИН, 2000.

Дополнительная литература

1. Волкова И.О., Крутицкая Н.Ч., Шагин В.Л. Математический анализ (с экономическими приложениями). Функции одной переменной. М.: ВШЭ, 1998.

2. Высшая математика для экономистов: Учебник. / Под ред. Н.Ш. Кремера. - 2-е изд. М.: ЮНИТИ, 2000.

3. Математический анализ для экономистов. / Под ред. А.А. Гриба и А.Ф. Тарасюка. М.: ФИЛИН, 2000.

4. Щипачев В.С. Математический анализ: Учебное пособие для ВУЗов. М.: Высшая школа, 1999.

5. Sydsaeter K., Hammond P.J. Mathematics for Economic Analysis. Englewood Cliffs, N.J: Prentice Hall, 1995.

6. Simon C.P., Blume L. Mathematics for economists. N.Y., London: Norton, 1994.

Тема VI. Функции нескольких переменных (ФНП).

Функции двух переменных. Понятие о множестве (линии) уровня функции двух переменных. Карта множеств уровня функции двух переменных, взаимное расположение линии уровня функции двух переменных. Обобщение на случай функций нескольких переменных Экономические иллюстрации (функции спроса и предложения, функция полезности, производственная функция). Предел функции нескольких переменных. Арифметические операции над функциями, имеющими конечные предельные значения. Предел функции по направлению. Повторные предельные значения. Теорема о существовании повторного предела. Непрерывность функции нескольких переменных в точке и на множестве. Точки непрерывности и точки разрыва функции. Непрерывность функции в точке и по направлению. Взаимосвязь между непрерывностью функции по совокупности переменных и по каждому отдельному направлению. Арифметические операции над непрерывными функциями. Понятие о сложной функции. Непрерывность сложной функции. Теоремы Вейерштрасса и Больцано-Коши. Равномерная непрерывность.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

3. Щипачев В.С. Математический анализ: Учебное пособие для ВУЗов. М.: Высшая школа, 1999.

Дополнительная литература

1. Замков О.О., Черемных Ю.Н., Толстопятенко А.В. Математические методы в экономике: Учебник. М.: Дело и Сервис, 1999.

2. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

3. Высшая математика для экономистов: Учебник. / Под ред. Н.Ш. Кремера. - 2-е изд. М.: ЮНИТИ, 2000.

Тема VII. Дифференцируемые ФНП.

Частные производные и частные дифференциалы. Градиент ФНП. Дифференцируемость ФНП. Главная линейная часть приращения ФНП. Полный дифференциал ФНП. Достаточное условие дифференцируемости ФНП. Геометрическая и экономическая интерпретация частных производных. Эластичности. Касательная плоскость к графику ФНП. Дифференцируемость сложных ФНП. Инвариантность формы дифференциала ФНП. Однородные функции. Теорема Эйлера об однородных функциях и ее применение в экономической теории. Производная по направлению. Ортогональность градиента и множества уровня ФНП в точке ее дифференцируемости. Частные производные и дифференциалы порядка выше первого. Теорема о равенстве смешанных частных производных. Формула Тейлора для функций нескольких переменных. Матрица Гессе и гессиан.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

3. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании: Учебник. М.: Дело, 2000.

Дополнительная литература

1. Задачи и упражнения по математическому анализу для ВТУЗов / Под редакцией Демидовича Б.П. М.: Наука,1978.

2. Замков О.О., Черемных Ю.Н., Толстопятенко А.В. Математические методы в экономике: Учебник. М.: Дело и Сервис, 1999.

3. Высшая математика для экономистов: Учебник. / Под ред. Н.Ш. Кремера. - 2-е изд. М.: ЮНИТИ, 2000.

4. Математический анализ для экономистов. / Под ред. А.А. Гриба и А.Ф. Тарасюка. М.: ФИЛИН, 2000.

5. Щипачев В.С. Математический анализ: Учебное пособие для ВУЗов. М.: Высшая школа, 1999.

Тема VIII. Теория неявных функций.

Теоремы о существовании и гладкости неявных функций и их геометрическая интерпретация. Формулы для частных производных и дифференциалов неявных функций. Теорема о существовании и гладкости обратной функции как частный случай теоремы о неявной функции. Зависимость и независимость функций. Общая теорема о зависимости и независимости совокупности функций. Матрица Якоби и якобиан. Экономические иллюстрации теоремы о неявной функции.

Основная литература.

1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. М.: Изд-во Моск. ун-та, 1985.

2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: Наука, 1997.

Дополнительная литература

1. Задачи и упражнения по математическому анализу для ВТУЗов / Под редакцией Демидовича Б.П. М.: Наука, 1978.

2. Волкова И.О., Крутицкая Н.Ч., Шагин В.Л. Математический анализ (с экономическими приложениями). Функции одной переменной. М.: ВШЭ, 1998.

3. Замков О.О., Черемных Ю.Н., Толстопятенко А.В. Математические методы в экономике: Учебник. М.: Дело и Сервис, 1999.



Скачать документ

Похожие документы:

  1. Примерная программа наименование дисциплины математическое

    Примерная программа
    Цель - формирование знаний и умений по разработке математических моделей управления воспроизводством плодородия почв и продукционным процессом в агрофитоценозах.
  2. Примерная программа наименование дисциплины Математика

    Примерная программа
    Цели изучения дисциплины: формирование понятий об элементах математического аппарата, необходимого для решения теоретических и практических задач аграрной науки и сельскохозяйственного производства, методах математического исследования
  3. Примерная программа наименование дисциплины Дифференциальные уравнения Рекомендуется для направления подготовки специальности

    Примерная программа
    Современный инженер-экономист и математик-программист должен в достаточной степени владеть как классическими, так и современными методами исследования, которые могут применяться в его области.
  4. Примерная программа наименование дисциплины Эконометрика Рекомендуется для направления подготовки

    Примерная программа
    Материал учебной дисциплины предназначен для использования в курсах, связанных с количественным анализом реальных экономических явлений, таких как, например, прикладная микро- и макроэкономика, маркетинг и других.
  5. Примерная программа наименование дисциплины Методы оптимальных решений Рекомендуется для направления (ий) подготовки (специальности (ей))

    Примерная программа
    Развить системное мышление слушателей путем детального анализа подходов к математическому моделированию и сравнительного анализа разных типов моделей;

Другие похожие документы..