Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Татьяна Ковзик живет в городе Орск Оренбургской области, а ее структура работает во многих регионах России и странах СНГ.В этом номере Татьяна Тимофее...полностью>>
'Документ'
Вырисовалась достаточно чёткая картина. От 4,6 до 3,9 млрд. лет назад шли формирование и интенсивный разогрев Земли, во время которых ни о какой жизни...полностью>>
'Конкурс'
Министерство образования и науки Удмуртской Республики, Институт повышения квалификации и переподготовки работников образования Удмуртской Республики...полностью>>
'Программа'
рассмотрен и одобрен: Координационным совещанием национальных государственных заказчиков, головного и национальных разработчиков Программы 25 октября...полностью>>

Главная > Книга

Сохрани ссылку в одной из сетей:

2.2. Жизнь как неизбежность

И уцепясь за край скользящий, острый, II слушая всегда жужжащий звон,Не сходим ли с ума мы в смене пестрой Придуманных причин, пространств, времен...

Когда ж конец? Назойливому звуку Не станет сил без отдыха внимать... Как страшно все! Как дико!Дай мне руку, Товарищ, друг! Забудемся опять.

А.Блок

Прежде чем перейти к исследованию такой системы, как человек, еще раз напомним, что в данной работе речь идет о формальных нейронах, поэтому, естественно, носителей формальных нейронов следует воспринимать в качестве формальных систем.

Как известно, нейроны в человеческом мозгу интенсивно рождаются и только рождаются до тех пор, пока зародыш находится в чреве матери, да и то это длится только в течение нескольких месяцев. После чего процесс рождения замедляется, останавливается и начинается процесс гибели и окостенения тканей. К тому времени, когда существо рождается на свет, нейроны гибнут и с каждым прожитым годом все более интенсивно. Не зря говорится, что человек начинает умирать еще не родившись.

В частности, М.Лэмб утверждает ("Биология старения"): "Мозг и скелетные мышцы служат классическим примером тканей, в которых во взрослом состоянии не происходит обновления клеток. ... О возможной утрате нервных клеток по мере старения организма «первые сообщил Ходж в конце прошлого столетия. Он подсчитывал число нейронов в мозгу медоносной пчелы и человека и нашел, что с возрастом оно уменьшается".

Последнюю точку в споре поставил Корзеллис (1975 г). Он опубликовал по этому вопросу большой обзор и представил новые данные, полученные путем подсчета клеток на срезах мозговой ткани большого числа нормальных людей. Его данные свидетельствуют, в частности, что число

Согласно предложенной здесь концепции гибель нейронов означает начало процесса обучения. Сказанное означает, что у человеческого существа, именно как у человеческого существа, нет и не должно быть памяти о первых минутах жизни эмбриона. Память начинает формироваться лишь с началом гибели нейронов.

Массовый процесс рождения нейронов напоминает размещение на шахматной доске фигурок для игры, которые ставятся отнюдь не по правилам. С точки зрения стороннего наблюдателя все выглядит весьма хаотично и нецеленаправленно, как будто ребенок, незнакомый с правилами игры, расставляет фигурки, которые тут же начинают самостоятельную жизнь, вступая в конфликт друг с другом и погибая при этом. Композиция на доске начинает меняться в соответствии с правилами хождения каждой отдельной фигуры. Зная начальные данные и правила, можно определить множество возможных вариантов (сценариев) развития и гибели данной системы.

Откуда берутся начальные данные о размещении фигур на доске? Для объяснения ситуации привнесем в модель такие понятия, как: "генетическая память", "самозарождающаяся сесть" и "саморазрушающаяся сеть". Под генетической памятью будем понимать закон распределения связей между нейронами, определяющий их рождение. Этот закон может быть описан, например, методами фрактальной архивации. Представляется, что там, где речь идет о миллиардах нейронов и их связях друг с другом, особая точность не требуется, поэтому в данном случае (для данной модели) можно попробовать установить коэффициент сжатия как угодно большим, но, естественно, в разумных пределах.

При этом, что характерно, генетическая память— память о числе нейронов и законе распределения их связей, может раскручиваться по типу фрактальной разархивации, когда два случайных изображения (схемы) путем процедуры самообучения настраиваются друг на друга. Подробнее см. [2].

Партия обучения всегда играется до конца. Человек пытается приспособиться к жизни через ее понимание, расплачиваясь за это игровыми фигурками-нейронами. Обучение — это способ выжить, но плата за обучение — это гибель базовых элементов. Для того чтобы организму жить, он должен "сжигать" себя изнутри.

Смерть стирает уцелевших.

Можно начинать новую партию. Новая расстановка фигурок полностью стирает остатки памяти о прошлом. Новое рождение уничтожает историю. Но надо отметить, что процесс рождения, эквивалентный в нашем примере процессу расстановки фигур на доске, на самом деле не может быть хаотичным, а значит, бессмысленным. Как известно, в процессе созревания эмбрион вкратце "вспоминает" всю свою историю, как историю развития живого существа. С моей точки зрения — это не просто кино, это учебный фильм, в ходе которого реализуется программа самообучения эмбриона. На изначальную пустоту, которую суждено заполнить эмбриону в материнском чреве, подается генетическая программа, содержащая уже прожитые предками жизни. "Разность генетических потенциалов" порождает нейроны на соответствующем месте с соответствующими связями. Таким образом нереализованное напряжение прошлого врывается в настоящее, искривляя его пространство рождением новых элементов. Эмбрион обучается, используя механизм самозарождения. Генетическая память отображается в количество нейронов и их связи друг с другом. Этот этап можно назвать этапом синтеза в противовес начинающемуся сразу по его окончанию этапу расщепления-уничтожения. Чем большей сложности удастся синтезировать структуру, тем большему ее удастся в дальнейшем научить, используя механизм саморазрушения. Согласитесь, чем-то все сказанное напоминает операции расщепления и синтеза в природе.

Более того, подобный подход объясняет, почему человек способен вспомнить и остро пережить (например, в состоянии гипноза) те события, которых не было в его жизни (Р.Моуди "Жизнь до жизни"). В силу того. что память распределена по всему множеству нейронов, по их связям между собой, по их весовым коэффициентам, можно утверждать, что человек уже рождается "набитым" "неизвестными ему воспоминаниями". В течение жизни эти воспоминания постепенно разрушаются новой информацией. Однако существуют приемы (ЛСД, специальные сновидения, гипноз, медитация), позволяющие отобразить активное сознание в еще неиспользованные (неразрушенные) структуры, и тогда получатся и "девять предшествующих жизней Раймонда Моуди", и многое другое.

В результате имеем сменяющие друг друга процессы рождения и гибели. И те и другие направлены на обучение. Красивое художественное оформление всё вышесказанное получило у К.Кастанеда: "С помощью группового созерцания новым видящим удалось увидеть разделение двух аспектов накатывающей силы. Они увидели, что это две силы, которые слиты, но не являются одним и тем же. Кольцевая сила приходит к нам чуть-чуть раньше опрокидывающей, но они настолько близки, что кажутся одним.

Кольцевой силу назвали потому, что она приходит в виде колец, нитеобразных радужных петель очень тонких и деликатных. И точно так же, как опрокидывающая сила, сила кольцевая ударяет каждое живое существо непрерывно, однако совсем с другой целью. Цель ее ударов дать силу, направить, заставить осознавать, то естьдать жизнь " (К.Кастанеда. "Огонь изнутри").

Все, о чем здесь говорилось, касается не только механизма функционирования мозга. То же самое можно увидеть на уровне человеческого общества, когда уничтожение членов общества приводит к возрастанию мощи общества. Однако, если численность становится меньше критической для поддержания и/или развития конкретного технологического уровня, то начинается неизбежный регресс.

Функциональная деградация становится неизбежной в силу того про­стого факта, что для решения многих сложных задач нет достаточного чис­ла требуемых функциональных элементов и связей между ними.

Функциональная деградация в свою очередь обязательно отражается на безопасности системы. Те соседи, которые ранее почтительно снимали шляпу, теперь уже не обращают серьезного внимания на когда-то всеми уважаемую Систему и бесцеремонно заставляют ее отодвинуться от общего пирога.

Не так ли дела обстоят сегодня с Россией?.

Данный раздел назван «Жизнь как неизбежность» не.ради красного. словца. Почему-то принято считать, что единственное, чего не может избе­жать человек — это смерть. Но если речь идет о любом живущем или уже умершем человеке, то факт его существования сегодня или в прошлом од­нозначно свидетельствует о том, что и рождения нельзя было избежать.

Любое рождение всегда связано с «залатыванием» пробоины в днище корабля, называемого Жизнью.

Но заделывать пробоину можно только тогда, когда для этого есть время и соответствующие материалы.

Теперь настало время перейти к практической реализации сказанного и предложить конкретные алгоритмы функционирования информационной самообучающейся системы, имеющей только одну цель — понять, что ее ожидает. Понять и суметь самостоятельно продолжить входную обучающую последовательность в своей гипотетической модели до первой ожидаемой угрозы.

Глава 3. Алгоритмы самозарождения знания (опыт построения практической системы)

Я— лишь рисунок, сделанный пером

На лоскуте пергамента; я брошен

В огонь и корчусь!

В.Шекспир

3.1. Жизненная сила элемента

И смотрю, и вражду измеряю.

Ненавидя, кляня и любя:

За мученья, за гибель — я знаю —

Все равно: принимаю тебя!

А.Блок

Для того чтобы придать рассуждениям вес и плоть, опустимся на землю, т.е. приведем конкретные примеры, которые легко могут быть реализованы с помощью ЭВМ, и посмотрим, каким образом система способна обучаться используя принцип самовозрождения.

Предположим, что наши нейроны способны к следующим элементарным действиям (ЭД): сложить ('+'), вычесть по модулю ("-"), умножить ("х"), разделить ("/"), ничего не делать (" "). Можно допустить и операции логарифмирования и возведения в степень— это позволит расширить возможности системы по обучению. Нас же сейчас интересует сам подход, поэтому мы ограничимся только пятью названными операциями. Далее, выделим участок «пустого» пространства, на который будет оказываться воздействие по двум входам и одному выходу.

Предположим, что возникшее напряжение должно компенсироваться обра­зованием нейронов в этом «пустом» пространстве.

Предположим, что элементов должно появиться ровно столько (не меньше и не больше), сколько достаточно для компенсации напряжения.

Предположим, что при рождении нейронов выбирается нейрон с тем элементарным действием, которое максимально способствует минимизации напряжения.

Например, пусть на первый вход подан сигнал силой три условные единицы (х=3), на второй — 5 (у=5), требуемый результат — 20 (z=20).

Тогда, перейдя на язык линейного программирования, поставленные условия можно записать следующим образом:

х,у — входные значения;

z — выходное значение;

d — элементарное действие из множества [+, *,-,/,'' "].

При этом, считаем, что «ничего не делать» является наиболее предпочтительным из всех ЭД. Это действие подразумевает отсутствие нейрона и введено исключительно для полноты картины. Образно говоря, оно полностью соответствует восточной мудрости «никогда не делай лишнего шага, если можешь оставаться на месте, ибо тебе не ведомо не окажется ли этот твой шаг последним».

Требуется подобрать такое d, которое минимизировало бы выражение

(z-d(x,y))2 (3.1)

Отсюда следует, что на первом этапе должен возникнуть нейрон с ЭД «умножить». Обозначим его через а1. Возникший нейрон максимально сгладит существующие противоречия, но до полной идиллии будет еще далеко. Напряжение ослабнет, но останется. В том случае, если оставшегося напряжения система не в состоянии будет «долго терпеть», то ей придется опять решать ту же самую задачу, задачу по устранению возникшего напряжения, но уже в новых условиях. Целевую функцию (3.1) придется переписать в виде (с учетом нового элемента):

(z- (d1(x,y)+ d2(A1,x)+ d3(A1,y)+ d4(x,d5(A1,y)))2 (3.2)

Здесь d1,d2,d3,d4,d5 принимают значения из множества ЭД.

В нашем случае решение (3.2) приведет к следующим результатам (напоминаем, что операция является более предпочтительной):

d1 — " "

d2 — " '

d3 —-"+'

d4— " "

d5— " "

Таким образом, итоговая схема формирования системы по принципу са­мозарождения будет выглядеть:

Рис. 1.5. Итоговая схема формирования системы по принципу самоза­рождения (часть 1).

Процесс самозарождения повторяется до тех пор, пока система не откажется от рождения новых элементов, считая оставшееся внешнее напряжение вполне терпимым. Кроме того, с каждым разом задача выбора ЭД будет становиться все более и более трудоемкой. С одной стороны, все возрастающая трудоемкость выбора нейрона, а с другой— понижение внешнего напряжения приведут к тому, что система успокоится и будет работать с той погрешностью, на которую окажется способной.

На этом можно считать обучение по принципу самозарождения законченным. Но теперь уже появляется возможность дальнейшего обучения по принципу саморазрушения, который был рассмотрен ранее. Здесь его можно уточнить, введя такой параметр как «жизненная сила» нейрона. Под жизненной силой нейрона будем понимать величину внешнего напряжения для компенсации которого он был рожден. В приведенном примере жизненная сила нейронов а1 и A2 соответствует 15 и 5 соответственно. Будем считать, что нейрон может быть уничтожен только тогда, когда внешнее напряжение, действующее на него, превосходит его собственную жизненную силу. Это значит, что для уничтожения первого нейрона из приведенного примера потребуется напряжение не менее 15, а для второго— не менее 5 условных единиц.

Покажем возможность этого.

Пусть на вход системы, приведенной на рис. 1.5, поданы сигналы со значением 5 и 1, а на выход — 12, т.е. х=5, у=1, z=12. В этой ситуации внешнее напряжение элемента А2 превосходит его жизненную силу, и он гибнет. Процесс гибели распространяется вглубь системы, но останавливается на нейроне а1, жизненная сила которого больше внешней энергии разрушения Возникает ситуация, благоприятная для рождения нового элемента взамен погибшего.

Минимизация целевой функции (3.2) приведет к рождению нейрона с ЭД «вычитание по модулю», что отражено в итоговой схеме на рис. 1.6.

Рис. 1.6. Итоговая схема формирования системы по принципу самозарождения (часть 2).

В том случае, если внешние условия вернутся к первоначальным (x=3,y=5,z=20), то рожденный элемент опять будет уничтожен.

В приведенном примере силой, ответственной за уничтожение элементов, является значение целевой функции на новой порции обучающих данных. Понятно, что это только один из возможных подходов. Существуют и другие пути. Например, в качестве внешнего напряжения можно использовать функцию от неких средних значений по всей обучающей выборке.

Подобный принцип самообучения достаточно просто реализовать в виде компьютерной программы, размер которой, как и ее знания, будет динамически изменяться в зависимости от успешности адаптации к внешним условиям.

В предложенной схеме самообучения исключается такая ситуация, как паралич системы, и гарантируется на каждом этапе обучения та или иная точность предсказания. Эта точность определяется ранее рожденными нейронами.

Подобный подход не исключает методов, в основе которых лежит изменение весовых коэффициентов для входных связей нейрона, наоборот, изменение весовых коэффициентов является единственным методом настройки системы в том случае, когда рождение или гибель нового нейрона становятся невозможными. Например, в случае примера на рис. 1.6, система не способна давать ответ с той точностью, которую хотелось бы пользователю; возникновение новых нейронов уже невозможно в силу недостаточности внешнего напряжения; входные/выходные данные, достаточные для уничтожения нейрона А2, отсутствуют. Единственный способ повышения точности в этой ситуации — подстройка весовых коэффициентов.

В дальнейшем, системы, функционирующие на базе приведенных принципов самовозрождения и разрушения, для краткости назовем СР-сетями.

В рассмотренном примере в качестве ЭД фигурировали арифметические операции, и именно для удобства работы с ними была подобрана соответствующая функция цели. Однако многообразие существующих задач никак не позволяет свести все существующие процессы самообучения исключительно к набору арифметических ЭД. Поэтому возникает резонный вопрос: «Позволяет ли подобный подход решать задачи, связанные с переработкой графических или символьных образов, и можно ли данный подход использовать для решения обычных, будничных задач, присущих человеку, как объекту, притягивающемуся целью ?»

Пусть в качестве входных сообщений выступают строки символов, например, Х = «abc», Y = «def». На выходе должна быть строка вида Zp = «bcda».

В качестве целевой функции определим функцию вида:

F=∑ⁿ=iⁿ1g(Zp(i)-Z(i)),

где

n = max (strlen(Zp), strlen(Z));

Zp(i) — i символ желаемого результата;

Z(i) — i символ получаемого результата;

strlen() — функция определения длины строки;

g( Zp(i) - Z(i)) = 1, если Zp(i) = Z(i),

g( Zp(i) — Z(i)) = 1/2, если Zp(i) или Z(i) отсутствуют,

g( Zp(i) — Z(i)) = 0, если Zp(i) и Z(i) присутствуют, но Zp(i) ≠ Z(i).

В качестве ЭД определим следующие:

X+Y — склеивание строк;

X-Y — результатом является строка из символов, присутствующих в X, но отсутствующих в Y;

Di(X) — удаление первого символа строки X;

Dn(X) — удаление последнего символа строки X.

Тогда результатом применения изложенного подхода станет автоматически сгенерированная следующая СР-сеть:

При желании полученная схема всегда может быть автоматически отображена в текст компьютерной программы на любом заданном языке программирования. Например, если в качестве языка программирования задан язык Си, то будет получен следующий текст:



Скачать документ

Похожие документы:

  1. Г. Г. Почепцов Информационные войны

    Анализ
    «Каждый человек, военный или гражданский, участвует в информационной войне в той или иной ее форме»В. Маркоменко,зам. генерального директора Федерального агентства правительственной связи и информации (ФАПСИ) при президенте РФ («Известия», 1997, 12 авг.
  2. Реферат По истории информатики на тему " История становления информационных войн"

    Реферат
    Лучшее из лучшего - покорить нужную армию, не сражаясь. Хорошо разгромить противника на поле боя, еще лучше - отбить у него желание воевать, сделать так, чтобы ему даже не пришла в голову мысль о возможности войны.
  3. Литература панарин Игорь. "Информационная война и Третий Рим. Доклады"

    Литература
    ПАНАРИН ИГОРЬ НИКОЛАЕВИЧ,доктор политических наук,Академик Академии военных наук,Профессор Дипломатической академии МИД РФИНФОРМАЦИОННАЯ ВОЙНАИ ТРЕТИЙ РИМСОДЕРЖАНИЕВступление1 глава Информация и мировая политика1.
  4. Информационная стратегия США (анализ, современность, перспективы)

    Автореферат диссертации
    кандидат политических наук, начальник отдела международных обменов Управления научно – координационной работы и международных связей Дипломатической академии МИД РФ
  5. Манойло а. В. Государственная информационная политика в особых условиях

    Монография
    Заведующий кафедрой информационной политики Российской академии государственной службы при Президенте Российской Федерации, д-р философ. наук, проф. В.

Другие похожие документы..